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PREFACE

The goals of the Operability Assessment System (OASYS) program were to
develop a methodology for design, evaluation, and maintenance of system operability
throughout the life cycle of a system and to develop a system of computer tools to support
that methodology. OASYS provides the capability to quickly construct a system interface
and simulation and to conduct human-in-the-loop experiments to assess system
operability. Early consideration of these issues should result in improved system
performance through better design and lower system cost through earlier identification of
design issues. This effort was conducted by BBN Systems & Technologies in Cambridge,
Massachusetts. This research was supported by the Logistics Research Division, Human
Resources Directorate, Armstrong Laboratory, under Work Unit 2940-03-02.
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1. Introduction

This document is the final report of the Operability Assessment System (OASYS)
contract. The primary goals of the OASYS project were: 1) to develop a methodology
for design, evaluation, and maintenance of system operability throughout the life cycle of
a system, and 2) to develop a system of computer tools to support that methodology. A
secondary goal for OASYS was to provide a testbed for testing and validation of Human
Performance Models (HPM).

In this document we start with a summary of the major milestones of the project in
Section 3. Throughout the project there was an attempt to provide continuing test and
evaluation of the design and implementation of the tools using hands on testing by both
- Armstrong Laboratory and BBN human factors experts and by holding frequent design
reviews attended by a review board consisting of potential users of the OASYS system.
These evaluation activities are summarized in Section 4. Section 5 provides a description
of the methodology the OASYS software tools were designed to support and an overview
of the software delivered under this project. The design history for each of the tools,
including the basis for technical decisions in the design and the lessons learned about the
design process in retrospect, are described in Section 6. Section 7 describes the formal
software test process. Finally, Sections 8 and 9 discuss some lessons learned in the
process of using a rapid prototype development approach and comment on the possible
future path of operability support and human performance modeling.

2. Relevant Documents

The following documents were produced during the OASYS project to describe the
OASYS system and how to use it:

» "Concept of Operations”, CDRL AO010, Contract No. F33615-91-C-0012,
prepared for Air Force Systems Command, Armstrong Laboratory, Wright
Patterson AFB, OH, September 1993.

» "System Requirements Specification", CDRL A008, Contract No. F33615-91-C-
0012, prepared for Air Force Systems Command, Armstrong Laboratory, Wright
Patterson AFB, OH, November 1994.

* "User Manual", CDRL AO015, Contract F33615-91-C-0012, prepared for Air
Force Systems Command, Armstrong Laboratory, Wright Patterson AFB, OH,
June, 1995.

»  "OASYS Programmers Manual”, CDRL A014, Contract No. F33615-91-C-0012,
prepared for Air Force Systems Command, Armstrong Laboratory, Wright
Patterson AFB, OH, June 1995.
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3.

"Installation Guide" (OASYS Task Analysis System (OASYS-TAS), CDRL
A004, Contract No. F33615-91-C-0012, prepared for Air Force Systems
Command, Armstrong Laboratory, Wright Patterson AFB, OH, June 1995.

Project Overview

In September of 1991 BBN submitted proposal number P92-LABS-C-042 in response
to Armstrong Laboratory request for proposal number F33615-91-R-0012 for
development of an Operability Assessment System for Integrated Simultaneous
Engineering (OASIS). After proposals were evaluated, BBN was issued a contract for
development of the OASIS (later changed to OASYS) system in February of 1992. The
contract called for a four-phase effort over a 44 month period. The four phases consisted

of:

Phase I: System Requirements Analysis and Preliminary Architecture Definition.
Phase II: System Prototype Design Specification.
Phase III: Prototype Development.

Phase IV: Demonstration, Validation, and Documentation of the Prototype.

The major events and milestones in each of these phases are summarized below.

Phase I

The kickoff meeting for Phase I was held on April 21, 1992 at Wright Patterson
Air Force Base (WPAFB).

The OASIS Program Plan (CDRL A001) was submitted in May of 1992, and was
reviewed as part of a Technical Status Review in June.

The OASIS System Segment Specification (CDRL A006) was submitted in
November of 1992.

Phase I was completed in December of 1992 with the Software Requirements
Review (SRR) held at BBN in Cambridge, Massachusetts.

Phase I1

Following the SRR, BBN received approval to proceed with Phase IL.

The first formal technical meeting in Phase II was held at WPAFB on February
11, 1993.

Preliminary versions of the OASIS SRS (CDRL A009), and the IRS (CDRL
A008)were delivered to AL and discussed in the Software System Review held at .
BBN on June 28, 1993.

The Concept of Operation (CDRL A010) for OASYS was delivered in September.
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A detail system design document combining the Software Design Document
(CDRL A011) and the Interface Design Document (CDRL A012) was delivered
in November.

Finally, the Critical Design Review was held at BBN on November 17 and 18,
1993.

Phase III

The Phase III kickoff meeting was held at WPAFB on February 2, 1994.

Build 1 of the OASYS software was completed and installed at WPAFB at the
end of June. A user manual for build 1 was prepared and a brief training session
was conducted at that time.

A second version of build 1 incorporating bug fixes and some increased capability
was installed in July and a Technical Status Review and Requirements Review
Board meeting (see Section 4) was held from July 25th to the 28th at WPAFB.

As part of the ongoing test and evaluation process a revision of the build 1
software incorporating test user change requests was installed at the end of
October.

At the end of November a draft of a completely revised version of the Software
Requirements Specification was submitted, and on November 30 and December 1
the second meeting of the Requirements Review Board was held at WPAFB.

On December 16 build 2 of the software was delivered.

During the first week in March 1995, build 3 of the software was installed and
the Test Readiness Review was held at WPAFB. At that time the plan was to use
the rest of Phase III to correct software errors and incorporate user change
requests in preparation for Phase IV.

In April BBN was notified that Phase IV would not be funded and that the focus
of the rest of Phase III should be on integrating the OASYS system with the
Operator Model Architecture (OMAR) model shell to support test and evaluation
of human performance models developed in the OMAR environment. - At the
same time further work on the OASYS data-base was discontinued and several
features were dropped from consideration. :

As a result of this refocusing, the OASYS system was divided into two subsystems:
the OASYS Task Analysis System (OASYS-TAS), which provides a capability for task
and system-level analysis, and the OASYS Experiment System (OASYS-ES), which
provides a capability for real-time human-in-the-loop and model-in-the-loop

experimentation and data collection. OASYS-ES was "opened up" and reconceived as a

set of tools that could be used together and in combination with COTS and custom

software to - facilitate operability experiments in a wider variety of technical
circumstances. The final versions of the OASYS software (CDRL A013), including a

3
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subsystem to support OMAR modeling and a subsystem for task timing and load
analysis, were delivered to WPAFB in mid June along with User Manuals (CDRL A015),
the Programmer Manual (CDRL A014), and Installation Procedures (CDRL A004). The
OASYS Final Technical Review was held at WPAFB at that time.

4. OASYS Prototype Test and Evaluation

In order to support the prototype design approach for OASYS, the project needed a
community of potential users who would review and try to use the design prototypes and
provide continuous evalugtion of the developing system. During Phase I and II of the
program, the Air Force identified satellite control and specifically satellite control for the

Brilliant Eyes program as a possible user community with potential operability problems.

In May of 1992 representatives from BBN and AL/HRG attended a meeting of the
Human Computer Interface Working Group (HCIWG) at Pt. Mugu to investigate the
possibility of using satellite control as a sample problem for evaluating OASYS. As a
result of this visit, there was general agreement that satellite control would be an

appropriate sample problem to use for OASYS evaluation and test.

In April 1993, Armstrong Laboratory and BBN gave a briefing and demonstrations to
personnel from Air Force Space Command. Discussions at that time supported the belief
that satellite control would be an appropriate test domain.

The Air Force next identified the Brilliant Eyes (BE) program as a specific satellite
program that might work with the OASYS project. In June of 1993 a meeting was held at
Kirtland Air Force Base where Air Force Space Command (AFSPACECOM) and Air
Force Operational Test and Evaluation Center (AFOTEC) representatives were briefed on
the OASYS project. Additional briefings and discussions were held with the BE program

office in September.

As a result of these interactions, a Memorandum of Agreement was executed between
AL/HRG, AFOTEC, AFSPACECOM, and the BE program office to support the
development of OASYS and to apply the OASYS prototypes to BE operability. A
Requirements Review Board (RRB) with representatives from each of these agencies was
formed to provide user input to the project. The RRB met as part of the OASYS project
reviews. At these meetings the RRB members were briefed on the latest design issues,
saw demonstrations of prototype software, and participated in hands-on trials of the
prototype software. After each meeting the RRB made recommendations for design

changes or additions to improve the design.
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In addition to the RRB reviews, human factors expert consultants to AL reviewed and
tested each release and made recommendations for system improvements as well as
identifying software errors.

A list of recommended changes due to either software errors or recommendations
from the RRB or the AL human factors experts was maintained at both AL and at BBN.
Weekly telephone conferences served the function of a change review board to monitor
the status of entries on the change list. There were 231 proposed changes. Of these,
approximately 180 either resulted in changes to the system or were made obsolete by

major redesign of the related tool.
S. OASYS Capabilities—A User's Perspective

OASYS (Operability Assessment System) is a suite of tools that supports the
investigation of operability issues. We define operability assessment as the process of
analyzing whether a system composed of automated capabilities and human operators
interacting with those capabilities can successfully accomplish its intended mission.

This broad definition of operability assessment includes activities such as the analysis
of tasks required to accomplish a mission, the analysis of tradeoffs in the allocation of
these tasks to humans or machines, the analysis of the number of individuals needed to
operate a system and their required skills and training, the design and development of
prototypes of human-machine interfaces, the measurement of the workload and
performance of human operators using these interfaces during simulated system
operation, and the testing and validation of human-performance models of system
operators.

Operability assessment can and should take place throughout the system design and
development life cycle. As system requirements and system design are developed at
successively deeper levels of detail, OASYS supports the development of increasingly
detailed and realistic task specifications, operator workstation simulations, and
operational concepts based on mission requirements.

This section describes OASYS from the user's point of view. The section begins with
an overview of OASYS capabilities. It then provides examples of some real-world
operability issues that might be resolved with the OASYS tools. Finally, it describes a
methodology for operability assessment and describes the use of OASYS capabilities to
implement that methodology.
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5.1  Overview of OASYS Capabilities

OASYS supplies two major types of capabilities—a capability for task and system-
level analyéis provided by the OASYS Task Analysis System (OASYS-TAS), and a
capability for real-time human-in-the-loop and model-in-the-loop experimentation and
data collection provided by the OASYS Experiment System (OASYS-ES). OASYS-TAS
may be used to develop projections based on task decomposition in order to identify
possible operability bottlenecks. Potential problem conditions can then be explored in
depth by using OASYS-ES to simulate system operations and using test operators or
human-operator models to generate data on human-system performance.

OASYS-TAS is a tool for finding potential operability problems based on task
assignments, operator load, task coordination, and situation complexity. The user can
develop an annotated hierarchical task structure, diagram this task structure in a flow
chart, assign agents to perform each task, and designate task-completion times and
operator loads for each task. Based on a user-developed script of the critical events that
initiate tasks, OASYS-TAS will present a timeline view that shows where tasks overlap,

“where delays may occur, and where feasible operator loéding levels have been exceeded.

OASYS-ES is a tool for performing operability demonstrations and experiments to
collect human performance data. The user can develop models of system performance
linked to human-interface prototypes; design, set up, and run experiments using those
prototypes; and specify data to be collected on the performance of both human operators
and human-operator models as they interact with the prototype interfaces. OASYS-ES
supports team expetiments with multiple operators. Also, human-in-the-loop and model-
in-the-loop experiments may be run interchangeably or simultaneously—it is possible to
run a multi-person team experimént with live test subjects in one or more operator

positions and human-performance models in the other positions.

The OASYS tool suite is unique from several perspectives. First, it supplies an
unusual breadth of capabilities. A multitude of tools exist for task decomposition, work
flow modeling, building GUI prototypes, and building system simulations. OASYS
provides all of these capabilities in one tool set geared toward operability assessment. It
is specifically designed to support the systematic collection of operator performance data.
OASYS is also unique in its support of human performance model test and evaluation.
The OASYS simulation environment is designed for full substitutability of operator
models and human operators—prototype interfaces may be operated by either humans or
models, with identical performance data collected for both. This capability supports
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testing and validation of human performance models through comparison with actual
human performance on identical tasks. The use of human performance models as
surrogates for operator testing offers the possibility of inexpensive operability evaluation
early in the design process.

5.2  Using OASYS to Resolve Operability Issues

This subsection describes how OASYS may be used for operability assessment. The
method for using OASYS is described as a sequence of steps, beginning with task
analysis, and culminating in the construction and use of human-in-the-loop and model-in-
the-loop simulations for operability testing. While the steps as described are cumulative,
each one can be performed independently in order to focus on a specific operability issue
if sufficient input is available. Subsequent sections provide more detail on the OASYS
capabilities relevant at each step.

This section is intended as a description of how to use the OASYS tools to assess
operability, not as an extensive tutorial in operability assessment methods. A number of
excellent references and handbooks exist on various aspects of operability analysis,
including:

* Helander, M., Editor. (1988). Handbook of Human-Computer Interaction,
Elsevier Science Publishers, Amsterdam, The Netherlands.

« Lysaght, R.J., Hill, S.G., Dick, A.O., Plamondon, B.D., Linton, P.M., Wierwille,
W.W., Zakland, A.L., Bittner, A.C., Jr. and Wherry, R.J. (1989). Operator
Workload: Comprehensive Review and Evaluation of Operator Workload
Methodologies, Technical Report 851, United States Army Research Institute for
the Behavioral and Social Sciences, Alexandria, VA.

* Meister, D. (1985). Behavioral Analysis and Measurement Methods. John Wiley
& Sons, New York, NY.

* Preece, J. (1994). Human-Computer Interaction. Reading, MA: Addison Wesley

* Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Reading, MA: Addison Wesley.

*  Smith, S.L. and Mosier, JN. (1986). Guidelines for Designing User Interface
Software, MITRE Corporation, Bedford, MA.

5.2.1 The Challenge of Operability Assessment

Military Standard MIL-H-46855B, Human Engineering Requirements for Military
Systems, Equipment, and Facilities describes the analysis, design, and test process to be
performed in order to insure that military systems, equipment, and\facilities achieve
effective integration of personnel into the design of the system. The process starts with a
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mission analysis and a baseline scenario in order to identify the functions that must be
performed to achieve mission objectives. Functions are to be allocated to human
operators or to automated processes, and further decomposed into the specific tasks that
must be performed to accomplish the functions. Information flows between tasks are
analyzed, and each task is analyzed to determine its human-performance parameters, and,
if possible, these parameters are quantified in a way that permits the effectiveness of
human-computer interfaces to be studied in relation to total system performance. The
analysis should identify any high risk areas for operability.

This task analysis is converted into detailed design and development plans to create
human-computer interfaces that meet mission requirements. Studies and experiments are
to be performed to resolve specific problems or issues. At the earliest possible point,
mockups and models are to be constructed and dynamic simulation techniques used to
resolve design issues. Eventually, test and evaluation is conducted to verify that the

design meets human engineering criteria and overall system requirements.

In practice, the implementation of an operability assessment process such as that
described in MIL-H-46855B presents a number of challenges to the operability analyst.
One of the major obstacles to task analysis, especially early in system design, is the lack
of detailed information about operator tasks. Requirements documents and high-level
design documents are often vague regarding the specifics of human-operator
responsibilities. The information that is available about operator tasks is often scattered

across a number of diverse sources, each of which is incomplete by itself.

Furthermore, much critical information is not in written from, but exists only in the
heads of a multitude of individuals. For example, one useful source of information about
operator tasks for a new or upgraded system is the written documentation and training
materials for other, similar systems, as well as the personal experiences of individuals
who have operated these systems. Also, individuals working on the system design team
often have a concept of how the system will 6perate that underlies their design work, and
this implicit concept has implications for the tasks of the human' operator. These
operational concepts may not be precisely defined, however, and they may be limited to
the part of the system on which the designer is focusing. Each individual may have his or
her own perspective on how the system will function from the human operator’s point of
view. Operational concepts that are difficult to specify are even more difficult to
quantify. Efforts to assess system operability constantly seek to define operator tasks
precisely enough to allow quantitative measurement of task performance.
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Even when relatively complete written descriptions of system functions exist, it can
be very difficult to visualize the operator’s perspective from written descriptions without
actual experience in performing the tasks. Also, quantitative time requirements for tasks
are very difficult to specify without experience. As one test operator, who was trying to
complete a diffieult task within the required time, commented: “I had no idea that 45
seconds was so short!” Prototypes that capture system functionality from the point of
view of the operator can be very useful in supporting operability analysis, including the
quantitative measurement of task time requirements. Such prototypes are frequently time
consuming and costly to build, however, especiallylwhen systems functions are complex
and for new systems where system functionality has not yet been well defined.

The Importance of Communication

Because there is often no single complete source of information that can be used to
build a description of operator tasks, because much useful information may not be in
written form, and because individuals are likely to have many different persf)ectives on
system operation, effective communication is essential to successful operability
assessment.

Typically, the operability analyst cannot develop a task analysis without the input of
many different individuals. Task descriptions and task flows should be developed
through an iterative review and verification cycle that involves the whole system-design
team, not just the operability analyst, as well as individuals who have operational
experience with other similar systems.

A documentation and description mechanism is needed to facilitate this
communication and review process. Hierarchical trees can be used to show how a series
of tasks relates to a higher-level function, and flow charting techniques can be useful for
capturing sequential and parallel relationships among tasks.

Prototypes of human-computer interfaces are also a useful tool for fostering
communication as the system design is developed. Concrete representations of system
functionality from the operator’s viewpoint can be used as a starting point for discussions
of the adequacy of system operability concepts. Early prototypes can reveal major
operability problems. As the design progresses, higher fidelity prototypes can be used to
collect quantitative performance data to ensure that operator performance is adequate and
that workload is within feasible levels.

The OASYS tools have been designed to support communication throughout the
operability assessment process. Diagrams showing the decomposition of functions into
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tasks and the sequence of those tasks may be developed using OASYS-TAS. Changes
may be made as the descriptions are reviewed and revised, producing a task description
that captures information from many different sources. OASYS-ESis a tool for building
dynamic interface prototypes, driven by scripts and system simulations. These dynamic
prototypes may be used as a basis for discussion in walkthroughs and demonstrations or
may be used to collect both qualitative and quantitative data in systematic controlled

experiments.

Repositories of Operability Information

Operability information for a new or upgraded systems comes both from work with
existing systems that are performing similar missions, and from the design, development,
and testing of the new system. Operability information from both sources is typically
stored in four types of repositories:

« Written and Graphical System Descriptions. This includes documents such as
Mission Needs Statements, requirements specifications, Concept of Operations
(CONOPS) documents, design documents, and training materials.

« Numerical Databases. This includes historical performance, workload, and
staffing data for similar systems as well as experiment and test results for the
system being designed.

« Existing Systems or Working Prototypes of New Systems. The system itself is
an important repository of information. Existing systems that perform similar
missions are a rich source of operability information for new systems, although
the new system may differ from the older one in significant ways. Prototypes of
the new system typically capture only a portion of the functionality of the full
system, but they embody information in a dynamic way that is qualitatively
different from other information repositories.

« Expert Knowledge. The minds of system builders, analysts, and potential users
are an important repository of knowledge about how the system may be operated
and the operability issues that may prove to be important.

The use of OASYS for operability assessment has two goals: 1) to increase the
amount of information in each of these repositories, and 2) to increase the accessibility of

this information.

Use of OASYS can increase the amount of operability information available in each
type of repository. OASYS-TAS can be used to develop task decompositions and task
sequences, increasing the amount of descriptive operability information available. Use of
OASYS-ES supports the translation of written documents into working prototypes, and
these prototypes provide a means for collecting numerical performance and workload
data. The process of developing task descriptions and task - sequences, building
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prototypes, and using those prototypes to collect data increases the amount of expert
knowledge available. The building and use of prototypes also promotes shared
operability awareness and congruent understanding of operational concepts among
system builders and users.

The use of OASYS can also increase information accessibility. The development of
task decompositions and task sequences based on multi-person input consolidates
information from multiple individuals in one accessible location. The translation of
written requirements and designs into working prototypes makes the design more
accessible and more understandable to potential operators of the system. Finally, lessons
learned from building and testing prototype interfaces can be incorporated back into
system design documents for broad distribution to the design team. Ultimately, a system
specification can include both written documents and a working prototype, with each one
capturing different aspects of the operational system.

52.2 Overview of OASYS Use

Figure 1 provides an overview of the use of OASYS tools throughout an operability
assessment process. The process begins with the decomposition of functions into tasks,
which are specified at a detailed level. The flow or sequence tasks of these tasks is then
specified and an allocation of tasks to human operators is developed.
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If the amount of operator time needed to perform each task can be estimated, then a
time and load analysis can be performed to determine if a defined task sequence can be
performed without overloading the operators under a specified task allocation. If task
time requirements cannot be estimated based on existing systems, it may be necessary to
collect data on the time needed by operators to perform tasks using dynamic prototypes of
the system. Based on task timing data, operator time requirements may be analyzed
under a variety of scenarios to determine if staffing levels will be adequate for different
types of situations that place different demands on the operators. This time and load
analysis may identify critical issues that require more in-depth analysis and data

collection using a dynamic prototype of the planned interface.

Based on the task specification, information requirements can be developed for
operator-machine interfaces, i.e., what information will be needed to perform the tasks?
These information requirements then form the basis for the design of prototype displays.
Finally, a simulation is built to make the displays dynamic, using scenarios to specify the

timing and frequency of events external to the system.

This dynamic prototype may be used for demonstrations to elicit comments from
potential system users. Prototypes may also be used in controlled human-in-the-loop
experiments to collect performance and workload data. Task-time data from experiments
may be used to update time estimates in the time and load analysis, resulting in more
accurate timelines for task completion and more accurate estimates of the number of
individuals needed to operate the system. Human-in-the-loop experiments may also be
used to assess skill requirements for operator positions by measuring the performance of
individuals with different skill levels as they interact with the dynamic prototype. The
use of OASYS at each of these steps in operability assessment is discussed in more detail

below.

5.2.3  Developing Function and Task Decompositions

The purpose of function and task decomposition is to identify: and describe the
potential roles and tasks to be performed by human operators. The information available
for task decomposition will depend on the nature of the operability. assessment and the
stage of system development. For example, a new system that is still in the concept
development stage may have relatively few sources of information about the tasks of the
human operator, while a planned upgrade to an existing system may have extensive
information on operator as well as system functions and tasks. Possible sources of
information for building a function and task decomposition include:

12
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Mission Needs Statements. These will typically describe high-level system
functions, but may include scenario descriptions that are useful in developing task
descriptions.

Concept of Operations (CONOPS) documents. These will typically describe the
functions' of the human operator, although they may not be at a detailed level.

Requirements documents. These will often describe requirements for overall
system performance, but may not prov1de detail on human operator performance
requirements.

Design documents. Depending on the stage of the design process, these
documents may provide detailed descriptions of system design. Information
about operator tasks is often implicit in these descriptions, but further work may
be needed to develop explicit descriptions of operator tasks.

The design and development team. The individuals (typically engineers) working
on the design of a new or upgraded system will often have implicit concepts about
the operation of the system, and, as a consequence, the tasks of the human
operator. These implicit concepts may be made explicit through iterative review
of the task descriptions and task sequences developed by the operability analyst.
Even though the design and development engineers may not be able to generate
operator task descriptions, they often can critique such descriptions effectlvely
(“the operator won’t be able to do that because the system....”).

Documentation for similar systems, especially CONOPS and training materials.
Most new systems are similar enough to existing systems that there is a
substantial overlap in the responsibilities and tasks of the human operators.
Existing systems that have been in operation for some years typically have
operational concepts and detailed training materials that are a rich source of
information on operator tasks.

Individuals who have experience with similar existing systems. Individuals who
have operated similar systems are an excellent source of information on operator
tasks as well as operability issues. These tasks may need to be modified for a new
system, however.

To what level of detail should task decompositions be taken? In practice, the useful

level of detail depends on the objectives. Singleton (1994) comments that “How far to

take the task analysis is a function of the accessible data and the time available.” As a

rule of thumb, task analysis needs to be taken to the level at which the following

questions can be answered:

What decisions and actions are associated with the task?
What events trigger the task, i.e., when must the task be performed?
What are the closing events for the tasks, i.e., when is the task completed?

What are the inputs to the task, e.g., what information is requirecf?

13
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» What are the outputs or results of the task?

e What are the subsequent tasks, i.e., what happens next?

« How much operator time is needed to complete the task?

o Is there a possibility of automating the task?

« Who might perform this task? What kind of skills or experience might be

required?

For example, in a decomposition of the operator tasks performed in a satellite control
center, “perform satellite support” may be such a high-level task that it makes no sense to
try to answer the above questions, whereas “contact satellite ground station” (a subtask of
perform satellite support) is a specific-enough task that the questions may be answered

Using OASYS to Develop Function and Task Decompositions

OASYS-TAS provides a graphical tool for drawing hierarchical function and task
decompositions. The basic building block of task decomposition in OASYS-TAS is a
box, which represents an “activity.” For each activity, the analyst specifies a name for
the activity, and, if desired, an identifier for the type of individual (or automated process)
performing the activity. Each activity box may contain multiple subboxes to represent
subtasks. There is no preset limit to the number of levels to which a decomposition may
be carried in OASYS. The analyst may easily move up and down the task hierarchy,
adding or removing tasks as required. Only one level of the decomposition may be seen
on the screen at a given time, however. The analyst may print each level of the

decomposition to produce hard copy for review by others.

For each task (at any level in the hierarchy), the analyst may enter a series of task
attributes that describe the task, corresponding roughly to the questions listed above.
These attributes serve to provide more detail about the task. Time estimates for tasks, if
provided, may be used as inputs for the OASYS-TAS time and load analysis capability

described below.

Typically, an operability analyst might start to develop a task decomposition early in
the design and development process, perhaps in the concept development phase. The
analyst would start with the printed documentation about the system, including the
Mission Needs Statement, any requirements documents, the CONOPS, if available, and

any other information available. If available, training and operations manuals from

similar systems will be very helpful.

The analyst will then develop a tentative task hierarchy and create a graphic
representation of this hierarchy using OASYS-TAS. This hierarchy is likely to have a

14
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number of areas in which the necessary level of detail is missing. The analyst will then
seek further information from other members of the design and development team, and
from individuals who have experience with similar systems. These individuals will be
asked to review, correct, and add detail to the task decomposition. This may be done
directly by bringing up the OASYS-TAS display of the task hierarchy and making
changes as they are suggested, or it may be done remotely using paper copies of the task
decomposition and making changes to the OASYS-TAS decomposition afterwards.

Task decomposition is most easily considered in conjunction with task flow (see
below). It is typically easier to develop a list of the tasks required to operate a system by
using concrete examples—scenarios—than by attempting to list all tasks independent of
their interrelationships and without considering the external events that drive the tasks.
One or more specific scenarios can be used to set the stage for the task decomposition by
specifying a series of external events that drive the tasks, e.g., when event A occurs, the
operator will do X, then Y, and then Z. A number of different scenarios may be needed to
ensure that the task decomposition includes all of the tasks required under different
circumstances, and multiple individuals should be consulted in developing the task
decomposition. As each individual’s input is incorporated, the task decomposition will
become more detailed. Ultimately, the decomposition should reflect a consensus about
the tasks required to operate the new or upgraded system.

5.2.4  Specifying Task Flows and Task Allocations

- Operator tasks are rarely independent of one another—instead they exist in a complex
network of logical interdependency, with the start of one task often dependent on the
completion of another. Sequential interdependencies are often identified as part of the
task decomposition process, e.g., “the next logical step after contacting the ground station
is to send antenna-pointing instructions to the ground station.” Tasks that are parallel,
rather than sequential, can often be identified by working backwards from a mutual point
of completion, e.g., “in order for this task to be initiated, these two tasks must be
completed, but the two prior tasks do not depend on one another.” Tasks may also be
conditionally dependent, e.g., the operator initiates a repair task only if a fault is detected
during a maintenance check. Sequential and conditional dependencies among tasks are
captured in a task flow, which documents the sequence in which tasks are performed.

External events may also drive the sequence in which tasks are performed. Some
tasks may be on-going and independent of external events, e.g., a system status check
performed once an hour. Other tasks may not be performed at all unless, an external event
occurs, €.g., the processing of an incoming message. Any specification of task flows
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needs an underlying scenario or script of external events to drive it by specifying the

occurrence of those events that initiate task sequences.

Using QASYS-TAS to Document Task Flows

OASYS-TAS provides a graphic flow-charting capability for documenting task
interdependencies. The flow chart is created by selecting icons that represent "nodes"—
activities, decisions, or events—from a palette and linking them together to create
sequential flows and dependencies among tasks. In addition to the activity nodes
described above, the analyst may create decision nodes that specify possible branching to
other tasks as the result of a decision, and AND and OR nodes (from standard flow-chart
terminology) that incorporate logical rules for task flows. Events that initiate a task or a
series of tasks are indicated by an Init Event element in the flowchart that shows the point
in the task flow at which the initiating event occurs. All of the nodes and events in the
task flow may be connected by arrows, showing the sequence in which the tasks are

executed.

Typically, the analyst will document the task flow as the task decomposition is
developed. That is, as tasks are identified, their relationship to other tasks will be
specified. While OASYS-TAS allows the creation of unconnected nodes and events, the
analyst will rarely create such isolated nodes. The logical flow between activities will be
an integral part of developing a task decomposition based on a scenario, e.g., “as soon as
the B event occurs, the operator will begin doing M. As soon as that task is completed,
the operator will proceed to do N. At the same time, task P must be performed on an

ongoing basis.”

The goal of the task flow chart is to be as specific as possible and to communicate
clearly. Logical flows between tasks as documented in the task flow will be reviewed as
part of the task decomposition by other members of the design and development team as
well as by experts in similar systems. Once tasks are allocated to operators (or to
automated functions) the task flow chart also forms the basis for a time and load analysis.

Allocation of Tasks to Humans or Machines

The next step in the task analysis is to allocate the tasks to human operators or to
automated processing. While many system functions and tasks are clearly automated, or
clearly the responsibility of the human operator, some tasks may fall into an intermediate

“gray” area where human/machine responsibilities are unclear. These tasks require

further analysis to determine the best mix of human and machine capabilities.
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Classic human factors guidelines call for tasks to be allocated to humans or machines
based on the relative strengths and capabilities of each. A recent review of actual
practice, however, argues that allocation cannot be separated from design, and that the
system-performance effects of hypothetical allocations of functions to humans or
machines are often impossible to model (Fuld, 1993).

Increased levels of automation are often an intrinsic part of the concept for a new or
upgraded system. A realistic operational allocation question is usually of the form: “we
are planning to automate the BB process, but are unsure about how much and what kind
of information to give the operator, how much control the operator should have, and
when the operator should intervene in the automated process.” Thus the operability issue
for human/machine allocation is not “yes or no,” but the degree and type of control over
the automated process that should be provided to the operator.

Allocation of Tasks to Human Operators

In practice, a tentative allocation of tasks to human operators is usually developed,
tested, and refined as a system is designed and built. Initial allocations are often based

on:

» Current practice in existing systems. If similar positions exist in an operational
system, the responsibilities (and skill levels) associated with those positions are a
good starting point for the definition of positions in the new system.

CONOPS. If a CONOPS document exists, it may specify operator positions.

* Physical space constraints. Under some circumstances, the number of operators is
constrained by the space available, e.g., a mobile command center may only have
room for two or three operators. In this case, the issue is not how many operators
are needed, but whether the available operators can handle the task load.

Available personnel. The allocation of tasks to operators may be constrained by
the knowledge that only certain types or numbers of individuals will be available
to operate the system.

* Lines of command and authority. Because of their consequences, certain
responsibilities and decisions may be restricted to a particular military rank or
authority level.

location of ion ks in -
Human interactions with automated processes may be analyzed in OASYS through
the development of detailed task decompositions and task flows for automation concepts.
Note that the task decompositions for different degrees of automation are likely to have

different structures, not just different allocations of tasks to humans or machines. That is,
the introduction of automation usually means that functions and tasks are divided and
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organized differently, not simply that the machine performs tasks formerly performed by
the human. Based on these task flows, the information needed by the human operator.
interacting with the automated system can be identified, and dynamic prototypes
developed to provide that information. Automation concepts can then be tested by
measuring the performance of operators as they interact with (simulated) automated
systems in realistic scenarios. Note that the simulation need not actually include the
automated systems being contemplated;' it simply must reproduce the behavior of the
automated processes from the operator’s point of view in a specific scenario. The results

of this testing can then be used to improve the concept for human-automation interaction.

In assigning tasks to operators, the first step is to make a tentative assignment of tasks
in a task flow diagram to a type of operator (e.g., “satellite controller”) and specify these
assignments as an attribute of each task in the OASYS-TAS task flow. If task-
completion times can be estimated, a timing and load analysis (see below) can be
conducted using a variety of scenario scripts to determine if, and when, system operators
will be overloaded and which operators will have an unmanageable volume of work. If
operator load appears to be a problem, task-allocation concepts can be further tested with
rapid prototypes to ensure that a single operator can handle the tasks allocated to him or
her under a variety of conditions. For a team of operators, an OASYS-ES prototype may
be used to test whether a team of operators can meet mission requirements under a

candidate allocation of tasks.

Skill-level requirements for operator positions may also be an operability issue for
new or upgraded systems. Assessment of the skill level required for a position is
typically based on knowledge about existing similar systems, e.g., similar tasks are
performed in the AAA system by individuals with BBB specialized training or
experience. In the rare instances where a new system requires operator tasks that have
little or no resemblance to tasks in existing systems, it may be necessary to use dynamic
prototypes to test the ability of operators with different skill levels, experience, or training

to perform the task.

5.2.5  Analyzing Task Timing and Operator Loads

Task timing and task allocation fit together dynamically to determine system
operability. The adequacy of available time depends on what tasks must be accomplished
in that time period and how many people are available to accomplish them. In the same
way, the adequacy of the crew size depends on the number of tasks to be accomplished
and the time available to accomplish them. Operability analysis often fixes one of these
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factors and then analyzes the other, asking how much time is required or how many

operators are needed.

Answers to questions such as “Can the tasks required to contact, check status, and
download information from a satellite be accomplished in a 20-minute time window?” or
“Can a crew of two operators in a command vehicle operate a surface-to-air missile
system to intercept an incoming TBM?” require the specification of the following
information:

* What are the sequential dependencies of the tasks? Must some tasks be
completed before others can be started?

* How much time is required to accomplish each task? This may be subject to
external constraints (e.g., the task cannot be finished until an acknowledgment is
received) or it may depend completely on how quickly the operator can act.

* Does each task occupy one hundred percent of the operator’s time and attention,
or is it possible that some tasks may be accomplished simultaneously?

* How are tasks allocated to operators?

* What (if any) external events trigger the tasks? Under what scenario of external
events is the analysis being conducted?

If each of these factors can be specified, it is possible to create a timeline of tasks to
be accomplished by each operator under a given scenario, and to calculate the total “load”
of the operator, e.g., is the operator being scheduled to accomplish two full-time tasks
simultaneously? |

ing OASYS-TA Analyze Task Timin rator

OASYS-TAS task flow diagrams allow the analyst to specify task dependencies Ge.,
one task cannot start until another is completed), the time required to complete each task,
and the type of operator to whom the task is to be assigned. Based on this information,
and on a script that specifies external events, OASYS-TAS calculates and presents a
graphic timeline view of the tasks along with a graph indicating the load experienced by

each operator.

Task times may be specified using two parameters: 1) the task execution time, and 2)
the percentage of the operator's capabilities that are required during that time. For
example, a task that occupied the operator completely (i.e., no other tasks could be done)
for five minutes would be designated as having a five-minute execution time at 100
percent load. A task that occupied the operator intermittently over a one-hour period
(e.g., a status monitoring task) might be designated as having a 60-minute execution time
but only a 50 percent load.
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Scripts contain external events that may initiate the start of a task or a sequence of
tasks. The scripts specify the time that the event occurs, as well as the operator who will
handle that event. Scripts may also be used to inject events that cause the task flow to
follow a particular path. For example, if “check for faults” is a task, then there may be
two subsequent task flows: one if a fault is found and one if no fault is found. Scripts
may be used to trigger one of these two paths..

A typical use of the timing and load analysis capabilities might be to examine the load
for an operator performing a number of different tasks over a period of one to two hours,
during which a number of external events occur. The analysis might show that the
operator is fully occupied for most of that period, has some “down time” periods, and has
some periods in which the analysis shows a load of greater than 100 percent, i.e., more

tasks than it is possible to accomplish.

The analyst would then examine the tasks being performed during the overload period
and consider whether some of these tasks could be moved to slower periods. If there is
no 'possibility of moving the tasks, then another operator may be required. A new
operator could be added, tasks allocated to the new operator, and the analysis rerun to see
if load for the two operators remains within feasible bounds throughout the period. The
two-operator task allocation could then be tested using a more demanding script (in
which there are more external events triggering tasks) to see if two operators will be

adequate for extreme conditions.

Timing and load analysis may be used to identify tasks and scenarios that place high
demands on system operators, i.¢., to identify those situations in which the operability of
the system is most in question. Prototyping and experiment efforts can then focus on
those areas that are most difficult for the operator.

The most challenging aspect of timing and load analysis is the specification of task
times. It can be very difficult to estimate task times early in a design process for a new
system. For tasks that resemble those already performed in existing systems, task-time
databases may be available. Also, operators of existing systems may be able to provide
estimates (“How long would it take you to...... ). For new tasks with little resemblance to
existing tasks, it may be necessary to make assumptions about the time needed to perform
the task, and then test those assumptions by collecting task-time data using dynamic

prototypes in human-in-the-loop experiments.
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5.2.6  Specifying Information Requirements

Information requirements are the bridge between task decompositions, task flows, and
display designs. Most tasks will have a set of information that is required to perform that
task. If the task involves making a decision, then information will often be required to
make that decision. Much of the information needed to perform tasks and make decisions
comes from the human-computer interface. Therefore, the interface must be designed so
that the operator has access to the required information at the time that it is needed.

Computer displays are of finite size, and can only contain a limited amount of
information at any one time. Therefore, an interface design strategy is needed to ensure
that the display changes dynamically as the task and associated information requirements
change. This may be done by automatic changes, e.g., certain information always
appears when a certain type of message is received, or it may be under the control of the
operator. In either case, the interface designer must be careful that the operator does not
have to constantly change displays in a search for the relevant information for a particular
task.

Information requirements for tasks are typically identified through a combination of
analysis of existing systems, interviews with experienced operators, and common sense.
It is critical to have a detailed task decomposition to support this process because
information requirements can be identified sensibly only at a very detailed level.
Descriptions of specific situations are also helpful in identifying information
requirements, i.e., “what information is needed to perform this task in this situation?”

Specifyving Information Requirements Using OASYS-TA

Information requirements are very difficult to specify at a high level of task generality
(e.g., “perform satellite support”). Detailed task decompositions developed using
OASYS-TAS support the process of specifying the information required to perform those
tasks. As information requirements are developed, OASYS-TAS provides a way to
record and document those requirements by allowing the analyst to specify “input
information” as an attribute of each task.

Task timelines developed using the OASYS-TAS timing and load analysis
capabilities may also be helpful in grouping information requirements for tasks that
typically occur in close proximity to one another in time. These grouped information
requirements then form the basis for design of displays to support those tasks, preventing

operators from having to switch rapidly among many different displays.
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5.2.7  Selecting an Area for Prototyping

Early in the design and development process, it may not be feasible to develop a
prototype of an entire system. Instead, portions of system functionality are typically
selected for prototype development. Often, the areas selected for prototyping are those
considered to be “high risk,” i.e., areas in which there are serious questions or issues to be

resolved before design or development can proceed.

Where are the high risk areas for operability? How can they be identified early in the
design process? One way to identify potential operability issues is to concentrate on
those aspécts of the systems that are most different from existing systems. New features,
functions, and tasks are most likely to generate new operability issues. Of course, if
similar existing systems have operability problems, then these problems should be

considering in designing the new system.

OASYS-TAS timing and load analysis may also identify possible “problem spots”
where operators may be overloaded and operability problems may arise. Circumstances
in which a number of tasks must be performed simultaneously or where complex tasks
must be completed in very brief time periods are natural candidates for further analysis

and testing through prototype development.

5.2.8 Developing Display Designs

Display designs are based on analysis of the tasks to be performed and the
information required for those tasks. Information requirements are then grouped by
operator to create displays appropriate to operator positions in the system, and, to the
extent possible, grouped by task sequence so that the information needed for related tasks

will be easily accessible.

After the information needed for each task has been identified, the next step is to
develop display methods for each type of information. Ideas for display methods come
from a variety of sources, including the displays that have been successfully used in other
systems, requirements for consistency with other systems, and relevant human factors
standards and guidelines. Creative ideas for information display may be developed, but
care must be taken to ensure that innovative displays are truly useful to the operator and
not just a showcase for new technology. Prototype development and testing of innovative
displays with individuals who are representative of system operators should be conducted
to evaluate the usability of the displays.
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It is usually helpful to sketch prototype designs on paper and then use a graphical user
interface (GUI) building tool to compare alternative layouts within realistic screen real
estate constraints. Static prototypes in the form of storyboards can be used to gather
initial opinions about the GUI design from system operators.

An important element in choosing the displays to be built is the purpose of the
demonstration or experiment for which the displays are to be used. The operability
analyst should be able to clearly describe the purpose of the demonstration or the
hypotheses to be tested in the experiment. The lessons to be learned from the prototype
designs will determine which displays need to be developed and what information and
capabilities need to be included on the display prototypes. For example, if the purpose of
the prototype is to test alternative graphical methods for presenting information about a
satellite's health and status, there may be no need to develop the displays that support
ground-station contact procedures.

Building a GUI with QASYS-ES

OASYS-ES provides a GUI-building capability that allows the analyst to quickly
create a facade that shows the static appearance of the display. A library of gadgets is
available for commonly used elements of screen design such a buttons, pulldown menus,
and windows that contain text. A screen design is created by selecting these gadgets from
an icon palette and dragging them into the desired position on the screen. Gadgets may
be edited to change their position, color, size, or font type as needed. New gadgets may
be created and added to the library to create display objects that are specific to a
particular application.

The user assigns a name to each gadget on the display. This name is then used in
creating a simulation to drive the display, allowing the operator to provide input to or
receive output from the simulation through the GUI.

5.2.9  Building and Using Dynamic Prototypes in Demonstrations and Experiments

Dynamic prototypes of a system are invaluable in operability assessment. Prototypes
that show how the system will behave in a specific situation and allow the operator to
interact with the system in realistic circumstances can be used to detect operability
problems and to resolve issues before full-scale development begins.

The key to making dynamic prototypes valuable for operability assessment is to have
clearly defined goals for the use of those prototypes. It is not sufficient simply to build a
prototype—the purposes of that prototype in terms of operability assessment must be
specified from the beginning. The operator tasks that are supported by the prototype
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must be clearly specified, or there will be no way to assess whether the prototype is
successful from an operability standpoint. For example, if a GUI is designed to support
certain operator tasks, then a dynamic interactive prototype of that GUI can be used to
assess whether operators are able to successfully perform those tasks using the GUIL. If
the purpose of the prototype GUI is not well defined, however, then there are no obvious
criteria for judging the success of the prototype from an operability standpoint.

The level of fidelity of simulated system behavior should be driven by the purpose of
the simulation and the desired behavior of the GUI. Simulation design issues may
include the appropriate granularity of time units (e.g., seconds or minutes), the
importance of including realistic detail, and the need to introduce etrors or uncertainties.
For operability assessment, there is no reason to build into the simulation detail and
fidelity that will not be apparent to the human operator.

Dynamic prototypes may be used to gather operability information through
demonstrations or through human-in-the-loop experiments. Demonstrations are typically
less formal than experiments. They are designed to elicit feedback from operators, but
not to collect objective quantitative data on operator performance measures such as speed
or accuracy. Feedback may be in the form of verbal comments, preferences, or ratings of
the value of different GUI features. If operators do not have a chance to actually interact
with the system in trying to accomplish specific tasks, however, their feedback may not

be very detailed or specific.

Human-in-the-loop experiments are typically designed to collect quantitative data on
operator performance and operator workload, as well feedback on operator preferences
and the value of display features. In order to have confidence in the quantitative
performance and workload data collected, it is usually necessary to use a number of

different operators as well as multiple scenarios in the experiment.
i YS-ES to Builda m Model ri

A major feature of OASYS-ES is the capability to build simulations of system
behavior in order to produce dynamic interactive GUIs for operability assessment. The
basic building block of the system model is the Event Translator, which reacts to input

events in order to produce output events.

Working from the GUI, the modeler identifies the desired consequences of each
operator interaction with an input gadget, and the information to be displayed in each
output gadget. The modeler then defines a series of Event Translators that produce the
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desired behavior, i.e., react to the GUI input gadgets and provide information to the GUI
output gadgets.

One or more scripts are developed that specify the external (outside the system)
events that drive the system model. For example, the approach of a hostile airplane might
be part of script for a surface-to-air missile system. The detection of that plane, the
sending of an alert message to the operator, and the response to the operator’s commands
to intercept the plane would be simulated with Event Translators in the system model.
This use of scripts allows testing of the system in many different types of situations
without the need to change the system model.

Using OASYS-ES for Demonstrations

The primary purpose of demonstrations is communication and feedback.
Demonstrations can serve to educate system designers about operability issues, and to
elicit opinions about GUI designs from system operators. Demonstrations are typically
brief and involve only one or a few scenarios. If the audience for the demonstration is
playing only a passive role, i.e., is not interacting with the prototype, then it may be
difficult to hold their attention for a longer period. Data collection during demonstrations
is primarily qualitative and anecdotal, and is most useful for early detection of major
problems. Feedback may be used to modify display designs before more extensive
testing is conducted.

OASYS-ES may be used to conduct demonstrations using a subset of the capability
provided for conducting experiments (discussed below). A demonstration is
implemented as a single experiment trial. The user specifies a GUI, system model, and
script for the trial and runs the trial to begin the demonstration. The user would probably

choose not to collect performance data during the trial.

Using OASYS-ES for Human-in-the-Loop Experiments

The primary purpose of human-in-the-loop experiments is to resolve operability
/issues that require collection of data on well-defined measures of performance or
effectiveness. Typical questions include: Can operators perform this task quickly
enough to meet time limits? Can operators achieve the needed degree of accuracy in their
decisions? or Can operators maintain a feasible level of workload in stressful situations?

Performance measures often collected in operability experiments include the time
needed to complete tasks, the frequency of correct decisions, and the output of a task
(number of actions completed during a time period). Data for these measures may be
collected using OASYS-ES. Data for other measures may be collected through paper-
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and-pencil questionnaires, including subjective workload ratings if operator load is an
operability concern for the system, or usability measures such as user evaluations of the
adequacy and value of display features. Data for interface-usage measures such as the
number of times the operator switched between displays may also be collected using

OASYS-ES.

Experiments are typically designed to focus on a limited number of hypotheses, to
control sources of variability other than those of interest, and to provide sufficient data
for statistical tests of hypotheses. Experiments are often designed to compare the effects
of two or more factors that are systematically varied in the experiment, i.e., independent

variables.

OASYS-ES operability experiments may focus one or more types of independent
variables. The major types likely to be interest for operability are:
o Variables associated with the design of the interface.. These will be implemented

in OASYS-ES as different GUIs. For example, the user may want to run an
experiment to compare performance with two or more different GUI designs.

« Variables associated with the capabilities of the system. These will be
implemented in OASYS-ES as different system models. For example, the user
may want to run an experiment comparing the operability of a system under two
or moré different assumptions about its performance, e.g., when information will
be available, how accurate it will be, etc. As another example, the user may want
to test different levels or types of automated capability, also requiring two
different system models.

* Variables associated with the script. For example, the user may want to assess
operability under low-stress and high-stress situations caused by external events.

« Variables associated with individual subjects or teams of subjects. For example,
the user may want to compare the performance of individuals with and without
specialized training, or the performance of experienced and inexperienced teams.

Trials in an experiment are defined by specifying a value for each of the independent
variables listed above: the GUI to be used, the system model, the script, and the subject or
team of subjects. In order to design and run an experiment using OASYS-ES, the analyst
sets up an experiment design table. This experiment design table specifies the value for
each independent variable in each trial, the number of trials to be run, and the data to be

collected.
The experiment design contains a data collection plan that specifies which OASYS

simulation events are to be collected in a data file. Each event is time-tagged. Data files
may be created for each trial in the experiment, or one file may be created for the entire
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experiment. After data files have been completed, they may be exported for analysis with
the Statistical Analysis Systems (SAS).

Note that in order for the appropriate data to be collected during a simulation run, the
modeler who creates the OASYS-ES simulation must build into the simulation
appropriate events that can be used as the basis for data collection. For example, if the
analyst wishes to measure the time that elapses between the receipt of a message by the
operator and an operator action (e.g., clicking on a button) based on that message, the
modeler must make sure that the receipt of the message and the button click are
associated with simulation events that can be collected in a data file.

Experiment data have multiple uses for operability assessment. They may be used to
resolve specific operability issues, e.g., can a task be performed adequately by a team of
two operators within a specified time period? Experiments are also a source of task-
completion time data, which may be used in timing and load analyses, added to historical
task-time databases, and used as input to staffing and training models. Experiment results
may also be relevant for defining training and manpower requirements by providing
evidence about the number of operators needed for a system, the adequacy of
performance of operators at different skill or proﬁciency levels, and the amount of
training needed to perform certain tasks.

Using OASYS-ES for Model-in-the-Loop Experiments

The development and use of human performance models offers great potential for
reducing the cost and time associated with testing human subjects during operability
assessment. To the extent that human performance can be accurately modeled, early
operability testing could be performed through model-in-the-loop simulation. A
combination of human-in-the-loop and model-in-the-loop testing is also useful for
operability assessment in multi-person tasks, reducing the number of human operators
needed for meaningful testing.

Human performance models to be used for operability assessment must be thoroughly
tested and validated through the comparison of model performance data with human
performance data. OASYS-ES has unique capabilities for the testing and validation of
such models. Models may be substituted for human operators at any operator position in
an OASYS-ES simulation, and identical performance data collected for models and
human subjects performing identical tasks. This data-collection capability supports a
detailed comparison of the model's performance to that of human operators. OASYS-ES
also supports experiments involving teams of operators using multiple workstations, with
models substituted for human operators at any or all of the operator positions. This
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allows testing of individual operator performance in a multi-person team task without the

need to involve multiple individuals in each test session.
6. OASYS System

This section of the final report contains a high-level description of the OASYS
software system, describes the design rationale, and supplies the design history necessary
to provide context for that rationale. A detailed description of system operations is

available in the User's Manual.

6.1  System Overview

OASYS consists of two related software packages which are meant to be used
together to conduct operability assessments of software/hardware/human systems. The
data gathered from the OASYS system can be used to assess system usability, manning,
and skill level requirements as well as overall system performance under the assumption
that the hardware is performing up to specifications. (The OASYS system is not intended
to assess hardware reliability issues, though it can be used to assess the operability impact
of equipment failures.) In the following sections the term target system is used to
describe the software and hardware system for which potential operability is being
assessed. The term user refers to a user of OASYS, and the term operator refers to a user

of the target system.

The two software packages are the OASYS Task Analysis System (OASYS-TAS),
used for timing and load analysis, and the OASYS Experiment System (OASYS-ES),

used for human-in-the-loop and model-in-the-loop experiments.

OASYS-TAS is a scenario-based task-load analysis system. It is a modeling tool that
allows task performance in specific operating scenarios to be examined in detail. It
allows the user to input a hierarchical description of the task breakdown for the activities
being assessed. At each level of the hierarchy, the tasks can be arranged into a task-flow
network that caﬁtures the order and time interdependencies among them. The user can
also include conditional branches and other control nodes (logic rules) to indicate that the
execution of a task sequence must wait for some particular event or that the execution of

the task causes some event to occur.

Individual tasks in the hierarchy can be annotated with data concerning each task. In
particular, the user may specify the performer of the task, the time required for the task,
and the priority of the task. These attributes and the sequencing information allow the
task decomposition to serve as a basis for examining particular operating scenarios.
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OASYS-ES is a human-and-model-in-the-loop operability testbed. It facilitates the
construction of part-task or whole-task simulations of a target system and then allows
experiments to be conducted on that simulation. The operator roles in the system may be
played by human beings or by computerized human performance models. The system
can be run in different configurations and in different simulated scenarios. The user can
determine what data are to be collected during the experiment and how the experiment

will be set up in terms of trials, subjects, and target system configurations.

OASYS was originally envisioned as a single integfated system that supported all
aspects of operability assessment, using a single object-oriented data base. In February of
1995 the OASYS effort was refocused on support of human-and-model in the loop
experiments. At the same time further work on the OASYS data base was discontinued
and several features were dropped from consideration. As a result of this refocusing, the
OASYS system was divided into the two subsystems described above. By de-
emphasizing the data base, we traded the ability to link different relevant data from
different parts of OASYS for increased system openness. The experimental system was
"opened up" and reconceived as a set of tools which could be used together and in
combination with COTS and custom software to facilitate operability experiments in a
wider variety of technical circumstances. For instance, if OASYS were to be used early
in the design of a new system, all OASYS components might be used to run early
qualitative and quantitative design-viability checks. If OASYS were brought into an on-
going design effort late in the game (as operability considerations so often are), then
some OASYS experiment tools might be used in conjunction with existing simulations or
physical prototypes of operator stations.

The OASYS software systems are intended for a variety of users who will work
together in the analysis of system operability. The OASYS-TAS tool and many aspects
of the OASYS-ES experimental system, in particular experiment design, script writing,
and interface specification (described below), are designed for users with no
programming knowledge. Building the behavior of equipment simulations and creating
new simulated objects and GUI gadgets requires the participation of a Lisp programmer.

6.2 Documents

An important concept in the design of OASYS was the ability to link paragraphs in
documents to each other and to other objects in OASYS such as GUI gadgets,
simulations, and task descriptions. In order to facilitate maintaining these links as the
documents are edited, it was decided to implement a text and document editing system as
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part of the OASYS implementation. The format for saving documents with their links
was based on the hypertext concept .

A preliminary version of a text editor with linking capability was implemented, but
the cost of extending this version to a complete document editor would have taken

resources away from more unique features of the system.

The document handling approach was reevaluated, and we recommended that
document generation and editing should be done outside of OASYS using one of the
many excellent document systems available commercially. Documents would be
imported into OASYS in digital format (such as Rich Text Format (RTF) or Continuous
Acquisition and Lifecycle Support (CALS) format). Within OASYS, paragraphs could
be linked to OASYS objects including other documents. When a new version of a
document was imported, links to paragraphs that were not changed would be propagated
to the new document. Links to changed paragraphs would be listed and the user would be

required to reconnect them to appropriate paragraphs.

Work had begun on importing the two formats when the effort was refocused. As
part of the change in emphasis, the document tools in OASYS were de-emphasized and
eventually taken out of the system.

In retrospect it is clear that the idea of implementing a new document system was
unrealistic and that the only practical approach was to interface to a COTS systems using
one of the standard formats such as RTF.

6.3 Task Analysis, Timing, and Load

The OASYS-TAS task timing and load system is designed to support the
methodology of scenario-coupled operability assessment. This means that it is focused
on exploring the operability ramifications of individual, specific situations rather than on
the amalgamation of statistics over a large number of cases. There were two reasons for
this choice. First, stochastically based task flow analysis tools already exist and are in
wide use (e. g., Saint and Microsaint). Second, we felt strongly that many operability
problems, all of which involve a human component, are more readily understood and
corrected in specific contexts rather than in terms of average times and error rates.

Support of scenario-coupled assessment is accomplished through three components of
the timing and load system—the task decomposition tool, the script editor, and the
timeline viewer, as illustrated in Figure 2. The task decomposition tool will be familiar
to users of stochastic task analysis tools such as Microsaint or to users of project planning
tools such as Microsoft Project. As described in the system overview, it is used to input,
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edit, and view a hierarchical description of the tasks and subtasks for which operability is
to be assessed. It allows each task to be annotated and it allows the subtasks of each task
to be arranged in a flow chart that describes their order of execution. Also included in
these flow charts are "semaphores" representing the decisions made during task
execution. These semaphores are used to represent the need for a task to synchronize
with other tasks that might be executing concurrently or to wait for events in the external
world.

Task decomposition
and flow

Time-line View
(Structured projection)

Figure 2. Task Analysis Tools

In order to represent and manipulate specific scenarios, OASYS-TAS incorporates an
element not found in other task analysis tools—a script that provides the specifics of each
scenario to be examined. These scripts are created by the user through the script editor
and contain the relevant events and conditions that would occur in a particular scenario.
We envision that an analyst might write several scripts when assessing the operability of
a proposed system in order to represent various possible operating conditions such as

heavy load, equipment failures, exceptional circumstances, normal load, etc.

OASYS-TAS was designed to support the analysis of short, intense periods of activity
as well as longer periods in which idle time and delays may occur. For short periods
when many activities occur, the timeline view may be displayed with each task drawn
proportionate to its duration. For analysis of long periods of low activity, a compressed
summary view shows only task starts and stops so that long periods of elapsed time may
be collapsed onto a small display.

The initial vision and design concept for OASYS specified a single unified system
that supported all aspects of operability analysis. Operability analysis in practice is
usually not a well-defined, integrated, and well organized process, however. Instead, it
often involves piecemeal analysis and testing of different aspects of the system at
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different phases of design and development. For this reason, the final OASYS product

was eventually reconceived as a set of tools, rather than as a single monolithic tool.

In several ways, the timing and load tool was a casualty of this initial "unified
system" approach to OASYS. OASYS-TAS provides capabilities that are independent
from those of the other experiment-oriented components of OASYS, and it was the first
component of OASYS to be developed. It should have been delivered and tested early, as
a separate component, rather than being tied to more-complex OASYS capabilities that
were not developed until later in the project. Earlier delivery and testing of a self-
contained timing and load analysis tool would have allowed for more iterations in the
design and could have led to a better final product. Depending on user feedback, other
features could have been added. For example, the usefulness of allowing the user to
specify task preemption based on prioritization (if two tasks conflict for resources, the
user can specify which should be done first) was discussed, but project resources were not

available to add this feature.

The focus on "vertical” integration of the timing and load tool with the other OASYS
system components took precedence over providing "lateral" interoperability with other
related tools that might have proved more useful. For example, the possibility of making
the timing and load tool interoperable with a stochastic task analysis tool such as
Microsaint was discussed, but never implemented. Interoperability with other
complementary task-analysis tools could have increased the usefulness of OASYS-TAS

from the user's perspective.

The timing and load tool (as well as the rest of the OASYS tool set) also suffered
from a lack of unification and consistency in the interface design. Several different
software developers were involved in different aspects of the tool, and each implemented
a slightly different interface style. Each style had its own advantages, but the
inconsistencies in the interface were disconcerting and annoying to the user, and proved
to be time consuming to correct late in the development process. In retrospect, it is clear
that a unified style for the interface look and feel should have been imposed early in

development.

6.4  Experiment System

The OASYS-ES experiment system can be conceived as a collection of cooperating
tools that can be used together, as illustrated Figure 3. OASYS-ES supports the
development of a GUI linked to a simulation of the performance of the equipment in the
target system. This dynamic GUI may be used in demonstrations or in systematic
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experiments designed to collect performance data. GUIs may be operated by test subjects

or by human-performance models.

(HP-models)
Experiment design/control

N

Operability Experiments

and Demonstrations
/ Data Collection

Event and object
Definitions

GUI design

Script —

Equipment Model
Figure 3. OASYS-ES Experiment System

6.4.1 Interface Design

The OASYS user can create the interfaces through which human operators interact
with the simulated system. OASYS provides a panel editor for creating the "windows"
that will comprise the interface(s) to the target system. These windows can be populated
with gadgets from a palette using drag and drop interaction. These gadgets may be
moved, resized, and edited for color, text font, text size, etc. Gadgets are linked to event
translators that accept input from or provide input to the gadgets.

The GUI-building capability implemented in OASYS supports two levels of users—
operability analysts without programming experience and Lisp programmers.
Nonprogrammers may create interface designs by selecting gadgets from the palette,
positioning them on screens, and customizing their appearance. A "smart workstation"
capability helps the user to create the Event Translators needed to make GUI gadgets
function dynamically. The smart workstation is based on the assumption that a gadget
will be used in a typical way, and automatically generates the Event Translators needed to
support this typical use. New gadgets may be created and added to the palette, but this
requires Lisp programming (see the Programmer's Manual).

A decision was made early in OASYS design not to use one of the many available
COTS GUI-building tools, but instead to devote effort to the development of a Lisp-
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based tool for creating display gadgets and using them to build GUIs. There were several
reasons for this decision. At the time of the decision, most GUI-building tools allowed
the user to manipulate a graphic representation of the display, then, in a separate step,
generated the C code needed to create that display. Whenever changes were made to the
display design, this process had to be repeated. The few GUI building packages that
allowed direct manipulation of the display without a separate code-generation step were
extremely expensive, and even these packages had little capability for interactive data

interchange with an external simulation.

Our original design for OASYS envisioned capabilities that would have been difficult
to implement with the COTS GUI-building tools available at the time. In the original
design, all objects in the system were stored in one data base and the user was allowed to
create hypertext links between objects in that database. GUI gadgets were objects in this
data base, allowing the user, for example, to create a link between a gadget on the GUI
and a requirements-specification document also stored in the data base. The user could
then view the GUI that satisfied a requirement by clicking on the relevant paragraph of
text to bring up the GUL Neither this hypertext-linked data base nor the smart
workstations described above would have been feasible with COTS GUI builders.

In retrospect, the decision not to use a COTS GUI builder seems questionable. We
succumbed to the allure of tackling a solvable problem, rather than really considering
whether the problem needed to be solved. Although the panel editor (called "Mirage")
was successfully implemented, it consumed considerable resources that might have been
used elsewhere. Building Mirage was something that could be done, but not, perhaps,
something that should have been done. Also, in the time since the decision was made,
COTS GUI builders have improved considerably in capability and have decreased in

price.
6.4.2  Simulation Design

OASYS suf;ports the design and construction of system behavior for the target
system. Our original goal was to build a set of tools that would allow a non-programmer
to construct complex system behavior. We now believe this objective is, in some sense,
impossible by definition. At its core, it is the nature of the programmer's expertise to be
able to construct a set of procedures, objects, heuristics and algorithrris which, when
executed, will produce a desired behavior. Trying to enable non-programmers to
accomplish this task often results- in the creation of a new (perhaps graphical)
programming language. To the extent that this language is well designed and tailored to
its task, it may be easier to learn than the original language. Although its power is
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limited, it may be fundamentally acceptable to a wider audience. In no case, however, is
a programming task possible without programming. We eventually came to believe that
the best that can be done is to create an environment that is easy to use and to strike a
balance between the range of equipment behavior that can be simulated and the expertise
required to realize this behavior. Much of our early design effort was exhausted
discovering this truth. '

As it stands now, the OASYS simulation design system is a set of tools which, to a
degree, isolates a programmer from the need for extensive knowledge of the underlying
Lisp language in which the simulator is implemented. It allows simulations of moderate
complexity to be created entirely through a series of graphical interfaces. The resulting
simulations can be tailored by non-programmers and will be intelligible enough to them
to allow meaningful data collection to be specified during experiments.

Building a simulation model in OASYS is a process of building components. First,
the modeler defines the kinds of objects and events that will exist in the simulation, e.g.,
in an air traffic control simulation, planes may be one type of object, and planes crossing
an airspace border may be one type of event. Objects and events are created using a type
editor that allows the modeler to create a hierarchical representation of types. Planes, for
example, might be one type of vehicle. For each type, the modeler specifies the attributes
relevant to that type of object, e.g., planes might have altitudes associated with them.
Properties are inherited according to the hierarchical type structure specified by the
modeler. For example, if all types of vehicles have a position associated with them, then
planes, as a type of vehicle, will have a position attribute.

As part of simulation design, the modeler specifies the operator stations that will exist
when the simulation is run. Each operator station defines a position to be manned by an
operator or a human performance model when the simulation is run, and consists of the
set of GUI panels relevant to that operator. The physical location of the operator station,
defined by the specific workstation on which the GUI panels will be displayed, is defined
as part of the experiment set up before a simulation is run.

In order to run a simulation in OASYS, a script must be defined. This script specifies
the specific objects that are to exist in the simulation, e.g., five airplanes of the same type,
and the initial attributes of these objects, e.g., the initial position of each plane. Scripts
also specify any external events that arise outside the simulation but have an effect on
simulated objects and events. One simulation model may have many different scripts

associated with it.
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Event translators are the basic mechanism for making things happen in the simulation.
Event translators are rules that express the consequences of events occurring. Each event
translator has three parts: 1) a specification of the kind of input event that triggers the
event translator; 2) a specification of any attributes of an object that change as a result of
the occurrence of the event; and 3) a specification of the output event(s) generated by the
event, if any. Output events may have a time delay associated with them.

The major lesson we learned from building the OASYS simulation-construction tools,
as discussed above, is that building a powerful simulation language and building a
language that can be used by nonprogrammers are inherently contradictory goals. In
retrospect, we should have provided a procedure-based language for non-programmers
that could be used to specify linear sequences of simulated events, and a set of tools for

programmers that could be used to create more powerful and complex simulations.

6.4.3  Experiment Design

OASYS-ES allows the user to design a human-in-the-loop (or model-in-the-loop)
experiment by specifying a set of experiment design parameters. Essentially, an
experiment is designed to systematically vary some factor of interest for operability
assessment, while controlling for extraneous sources of variability that are not of interest.
The OASYS experiment-design parameters reflect the major factors likely to be of
interest in an operability experiment: the design of the GUI, the performance of the
hardware/software components of the target system, the "situation" (external events) as
reflected in the script, and the characteristics (e.g., skills or training) of the subjects

themselves.

An OASYS Experiment Design consists of a sequential series of experiment trials.
To initiate a design, the user specifies the number of trials in the experiment, the number
of subjects, and the number of operator positions/workstations to be used. For each
experiment trial, the user then supplies the identifying number for the subject(s) who will
participate in that trial, the assignment of subject(s) to operator stations or position (with
associated GUI panels), the script to be used, and the system model that will be used to
simulate the hardware/software behavior of the target system. For multi-person teams of
subjects, there is also a group identifier associated with each team.

The experiment design also specifies the "mode" in which each trial in the experiment
will be run. Trials in auto mode are used for both training and data collection trials.

Once an auto trial is initiated, the user (experimenter) has no control over the trial other
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than the ability to interrupt it. Manual trials are used for debugging purposes, and allow
the user to intervene (pause, resume, etc.) during the trial.

The physical workstations to be used for each operator station are specified as part of
the Experiment Design. This is done in two stages. The Experiment Design Window
specifies operator stations by ID code, e.g., "A," "B," etc. As one of the last steps taken
before selected trials are run, the experimenter specifies which physical workstations (by
system name) are to be used to create each operator station. These assignments may be
used to change the physical configuration of trials over the course of the experiment as
needed, e.g., trials may be run at several different locations. The assignment of operator
positions to workstations for trials not yet run may be changed as needed during the

experiment.

Experiment subjects may be either human beings or human performance models such
as those built with the Operator Model Architecture (OMAR) program. For experiments
involving multiple operators, it is possible to designate some operator positions to be
filled by human subjects while others are filled by models. The designation of humans or
models as subjects may be changed over the course of the experiment by changing
experiment design information for trials that have not yet been run.

If data are to be recorded for trials in an experiment, the user must specify the events
(from the simulation) to be recorded. This is done by selecting event types from the
OASYS Type Hierarchy. When the simulation is run during an experiment trial, OASYS
records the time and the parameters of each event for the event types selected, creating a
data file for later analysis.

During OASYS design, we considered providing "smart experiment design”
capabilities. This might have allowed the user, for example, to specify the number of
independent variables in the experiment, their levels, and whether they were to be within-
subjects or between-subjects variables, and to specify the number of replications. The
system would then have generated a suggested experiment design. We eventually
abandoned this idea because of the large variety of experiment designs potentially
relevant for operability experiments and the number and complexity of the factors that
affect the "best" design. We still believe this decision to be the correct one. OASYS as
implemented does not tell the user how to design an experiment, but instead provides
enough flexibility for the user to set up a wide variety of experiment designs appropriate

in different situations.

We also faced a tradeoff in design between supporting experiments involving a few
long trials and those involving many short trials. Some operability experiments, for
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example, might involve only a few "scenarios," each of which lasts for several hours.
Others might involve hundreds of repetitions of a task which takes only a few seconds.
The capabilities needed for long-trial experiments may be useless for short trial
experiments, and vice versa. For example, the ability to pause and resume in the middle
of a trial may be needed for long trials, while the ability to automatically sequence many
trials to run without experimenter intervention may be needed for short trials. Again, our
design is a compromise which supports both types of experiments. The user
(experimenter) may select a large number of trials to be run automatically for a subject, or
may select only one trial to run. Trials may be run in an auto mode, in which the
experimenter has no control over the trial once it starts, or in a manual mode, in which the

trial may be stopped and resumed at any time.

The experiment-design portion of OASYS benefited from Air Force involvement
through an iterative design process. We designed a series of storyboard sketches for the
experiment-design interface for Air Force review, and were able to benefit from
comments and suggestions based on these storyboards. This iterative design process
would probably have been advantageous for other OASYS components, but it was not
implemented until relatively late in the project. Also, the OASYS experiment-design
capabilities had an obvious application, and our Air Force reviewers were able to draw
directly on their own experience to generate useful comments. Some of the more abstract
OASYS elements (e.g., the Event Translators) were more difficult to review

constructively during design.

Overall, we feel that the design of the OASYS experiment-design component was
relatively successful. This success was due to a series of reasonable compromises
between flexibility and maximal support, an iterative design process with the Air Force,
the benefits of prior experience on the project, and the concrete and easily understandable

nature of the component's capabilities.

6.44  Experiment Execution

When an OASYS simulation starts, objects are created based on the script that has
been selected. An event queue is created and populated by the external events specified
in the script. As the simulation runs, events may be added to this event queue. The
simulation runs via an execution loop that takes the next event, waits for the time at
which the event is scheduled to occur, and causes that event to occur. The simulation
then checks to see if any event translators are waiting for the event to occur and executes
the rules associated with these event translators, including the possible creation of new
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events. When the operator interacts with GUI panels, new events are generated that may
be responded to by event translators.

'The speed with which complex simulations would execute during experiments was a
source of considerable concern during OASYS design. Simulations driving human-in-
the-loop experiments must run quickly enough to support human-machine interactions on
a time scale equivalent to that of the target system. Because execution speed is a function
of many complex factors, it was difficult to predict how quickly an OASYS simulation
would execute while the system was being designed. When OASYS was completed and
tested, execution speed did not prove to be a problem for the limited demonstrations
conducted during the program. It is not clear that this would be the case for more
complex systems, however.

OASYS is designed to support multiple distributed operator stations, and it offers the
possibility of conducting distributed experiments at remote physical locations. We
explored the use of the Internet to conduct such experiments, with an OASYS simulation
driving workstations at several geographically distant locations. Conducting a distributed
experiment over long distances would require the existence of a dedicated
communications channel, however. Because the Internet does not supply dedicated
channels, there is always a possibility that unpredictable delays in message transmission
could cause unacceptable delays in experiment execution.

6.4.5  Data Collection and Analysis

For all experiment trials in which data collection is chosen as an option, OASYS
records data on user-selected event types, including the time of the event and any
parameters associated with the event. The user selects event types to be recorded from a
list of all of the event types in the simulation. The user may choose to have all data for a
series of trials recorded in one data file, or to create a separate data file for each trial.

An early decision was made to produce OASYS experiment data in a form that was
accessible to a COTS statistical analysis package, rather than adding data-analysis
capabilities to OASYS. OASYS currently produces data files that may be analyzed with
the Statistical Analysis System (SAS), probably the most widely used data analysis
package in the behavioral sciences. OASYS data files may also be converted into a
spreadsheet format and analyzed using Excel or other spreadsheet packages.

An initial goal for OASYS was that it produce data on manning and skill-level
requirements for the target system. We investigated the possibility of having OASYS
produce manning-requirements data files that were directly usable by several different
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military manpower-planning models. Unfortunately, the issue of what type of data from
OASYS experiments would be relevant for manpower planning and skill-level
requirements became confounded with the issue of how OASYS data collection should be
designed. Final design and development of the OASYS data collection capability was
postponed contingent on investigating the type of data and data format needed by various
manpower planning models. Eventually, we concluded that most data from OASYS
experiments would not be directly useable by existing manpower and skill-level planning
models, that the major OASYS data relevant to such models would be task-timing data,
and that these data would be usable in almost any format. Our initial decision to produce
data files readable by COTS analysis package was the correct one, and OASYS data
collection could have been implemented much earlier if we had realized that experiment

data files need not be tailored for existing staffing and skill-level requirements models.

6.4.6 Human Performance Model Interface

It was central to the overall concept for OASYS that it accommodate model-in-the-
loop as well as human-in-the-loop operability testing and experimentation. The
completed OASYS-ES tool features complete interchangeability between human subjects
and human performance models developed using the Operator Model Architecture
(OMAR) toolset. In setting up an experiment, operator stations may be assigned to
physical workstations for use by human operators, or to human performance models.
During an experiment trial, data on operator-system interactions are collected for both
human operators and models as specified in the experiment design. In a multi-operator
experimént, some operator positions may be filled by human operators at the same time
that other positions are filled by models, with identical performance data collected for all

positions.

We expended considerable OASYS design time in attempting to develop a detailed
specification of the interface between OASYS simulations and human performance
models developed using OMAR. Developing a specification, in the abstract, for
integrating two systems that were "moving targets" proved to be extremely difficult.
Ultimately, we found that our best strategy was to work from a concrete example and to
develop a design by tackling a real problem. We built a demonstration (described below)
in which human operators and OMAR models interchangeably control a simplified air
traffic control system. In the course of implementing this demonstration, we developed a
workable design for the OASYS-OMAR interface.

Eventually, we developed an event-based interface for linking OMAR human
performance models to the OASYS simulation. The human performance model is
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responsible for specifying to OASYS which events it wants to "hear." When the OASYS
simulation executes, OASYS broadcasts these selected events to the model, including any
parameters associated with each event. As part of the demonstration, we provided a set of
Lisp-based human performance models that interacted with an OASYS simulation by
"listening" for events and injecting new events back into the OASYS event queue.

6.4.7 Demonstration

As part of the final demonstration of OASYS, we built a simplified air traffic control
(ATC) simulation for a team of four operators controlling adjacent sectors of the airspace.
Operators exchanged structured messages in order to transfer aircraft between sectors,
and were able to accept or deny these transfer requests as a function of their workload. A
script controlled the number, route, and speed of aircraft, subject to the commands of the
ATC operators. Two scripts were implemented to create different levels of workload for
the operators by varying the number of planes in the airspace. An OMAR model was
built to handle the ATC task, and this model was able to fill any (or all) of the operator
positions, with human operators filling the remaining positions. Comparative data were
collected for all four positions, with three positions filled by models and one by a human
operator. Measures of performance included the number of times that aircraft were
delayed waiting for a clearance, the mean length of the delays, and the mean time
between receiving a clearance and sector crossing. The data file produced by OASYS
was transferred to an Excel spreadsheet for analysis.

This demonstration illustrated many of the key features of the OASYS experiment
system: the ability to quickly create a simulation of a target system, the ability to easily
create dynamic GUI prototypes, the ability to simulate multiple operator stations for a
multi-person task, the ability to interchangeably use human operators and human
performance models in an experiment, the ability to specify performance data be
collected during the experiment for both humans and models, and the ability to create an
experiment data file that can be analyzed with COTS software.
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7. ~OASYS Software Testing

Testing of the OASYS systems (i.e., the Task Analysis System (OASYS-TAS) and
the Experiment System (OASYS-ES)) specifically addressed the graphical interface and
the individual system commands used as parts of procedures. To ensure that the systems
looked and performed as required, they were tested against their description in the
OASYS User's Manual to verify their appearance and behavior. The manual serves as a
top-level specification of how the graphical interface should look to the user and how the
user performs tasks using the system commands. For each system, the User's Manual
contains descriptions of all of the system windows and step-by-step procedures to
perform a task analysis on a target system or to design and execute an operability

experiment using OASYS.

7.1. Test Coverage

Testing of the graphical interface involved comparing the on-line screens to the
descriptioné of the windows for accuracy and completeness. Did the windows appear as
described? Did they contains the menu items, buttons, cells, panes, etc. as described?.

Were the names of windows, dialogs, menus, buttons, and labels correct?

In testing the system behavior, each procedure was performed as described in the
manual to see if the system produced the desired result. The testing verified that the steps
were complete and in the correct order, and checked any aspect of the graphical interface
that resulted or changed as a result of following the procedure. For example, the manual
describes how to edit the timing and load values of a task object (the TAS System, pg.
36-37). In testing this behavior, the test was passed if the dialog box for changing the
values was invoked by the indicated action, if the dialog box contained all the fields
described, and if values could be entered successfully into the fields.

The testing effort did not extend to the integration of the system components. For
example, when running a task analysis, the time to execute a task is a task attribute that is
set by following the procedure to edit the attributes of a task object. Both the procedure
for editing a task object-and the procedure for running a task analysis were tested
separately. We believe, based on informal observation, that task attributes were applied
correctly when running a task analysis, but this was not formally tested.
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7.2 Test Process

The windows examined, the procedures tested, and the order of testing was
determined by the content and structure of the User's Manual. The manual was followed
page by page. When sections detailed the layout and components of a window, that
window was activated and examined for compatibility with the manual description.
When sections outlined step-by-step procedures for performing a function, that procedure
was followed as described and the results were examined for both visual and functional
correctness.

The results of the testing are presented in the Software Test Report. The report
itemizes all the windows and functionality tested and gives the result of testing each item.

8. Lessons Learned

OASYS design attempted to use a rapid prototyping approach in which system
features are prototyped, demonstrated, and made available for hands-on testing by a
potential user community. User feedback is then incorporated in the design to produce a
system that meets user needs and is easy to use by the target community. Application of
this design approach was only partially successful for OASYS, and the experience and
difficulties encountered provide some useful lessons for future projects.

Although there was a significant effort to get a sample user community to review and
test the OASYS prototypes (see Section 4.0), there was still not enough detailed timely
feedback to support the rapid prototype design approach. With the possible exception of
the AFOTEC representatives, no one on the RRB would actually use a system like
OASYS. The human factors experts from AL were potential users, but they represented
only a small specialized group of users and they did not have the time to try to use
OASYS for a realistic task. For a rapid prototype design effort to work well there must
be one or two real users working almost full time applying the prototypes to a real task
and interacting with the design team on a daily basis.

The distribution of time between design and implementation on the OASYS
development was more representative of a conventional design process than a prototype
design effort. When a rapid prototype design process is used, the design phase must
allow time for several cyéles of prototype and test use of the major system features, but a
major part of the final prototypes are reusable in the implementation phase. The time
allocated for design should, therefore, be significantly longer than the implementation,
the reverse of the normal development cycle.

43

e




IR

BBN Systems and Technologies

A rapid prototype design approach does not reduce the importance of having a clear
definition of the system requirements and concept of operation and a thorough
understanding of the specific user community for the system. System Requirements and
Concept of Operation Documents should be prepared and reviewed to provide a guide for

prototype efforts.

A rapid prototype design approach does not reduce the importance of having
agreement on the look and feel rules for the HCI for designers (prototypers) of all
subsystems or tools to follow. Look and feel rules should be documented and agreed to

before prototyping starts.

When the system consists of a set of tools some of which have functions similar to
commercial tools such as document editors or GUI builders, the effort should be strongly
biased toward using the commercial tools and building interfaces and shells to integrate
them rather than building the tools themselves. This bias should be considered even
when system requirements must be relaxed or modified to allow incorporation of COTS

packages.

Another lesson learned from OASYS is the difficulty of building a set of tools that
allow a non-programmer to construct complex system behavior. Over the course of the
project, we came to believe that this objective is, in some sense, impossible by definition.
It is the nature of programming to construct a set of procedures, objects, heuristics and
algorithms which, when executed, will produce a desired behavior. Tools can make this
process easier, but they cannot replace the perspective and the design skills needed create
a complex simulation. We eventually came to believe that the best that can be done is to
create an environment that is easy to use and to strike a balance between the range of
equipment behavior that can be simulated and the expertise required to realize this

behavior.
9. In Retrospect

The OASYS system was conceived as a single tool to satisfy the needs of a wide
range of users including system designers, human performance modelers, human factors
experts, system test planners, and others involved in system operability. It was intended
as a powerful experiment building tool that would eliminate the need for programmers
when doing operability experiments. In retrospect both of these goals seem too ambitious
for the current state of the art.

Among the possible users that reviewed the system design for OASYS there seemed
to be very little overlap in the features they wanted to add or change. System designers
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and human factors experts both wanted the ability to run experiments, but the type of
experiments of interest were different. Human factors people wanted short experiments
that could be repeated with groups of subjects to produce quantitative results. The system
designers wanted longer total system experiments that may only produce subjective
results and identify design weaknesses. Others were interested in process models based
on the task decomposition rather than actual system models.

Although we made significant progress in reducing the need for computer
programmers, it is clear that simulation of large system requires some form of formal
programming language. '

In the end we produced two systems, one that adds a significant new capability
(scripted process models) to process modeling, and one that supports experiments with
complex system models and allows interchangeable use of live humans or human
performance models at the expense of requiring extensive programmer‘support.
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